If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2-8y=39
We move all terms to the left:
y^2-8y-(39)=0
a = 1; b = -8; c = -39;
Δ = b2-4ac
Δ = -82-4·1·(-39)
Δ = 220
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{220}=\sqrt{4*55}=\sqrt{4}*\sqrt{55}=2\sqrt{55}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-2\sqrt{55}}{2*1}=\frac{8-2\sqrt{55}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+2\sqrt{55}}{2*1}=\frac{8+2\sqrt{55}}{2} $
| 10(c+3)=90 | | 8p+13=29 | | 0.2x+-8=-2 | | 2(w-41)=78 | | 2c-6=40 | | 4(y+1)(4y-5)=0 | | 6(y+1/3)+7y=0 | | -6u-36=-2u+48 | | 3x+4.5=14 | | X+x/2+2+4x-8=49 | | 3x-5(x-3)=-6+5x-7 | | P^2-(6÷5)p+9÷25=0 | | P^2-(6÷5)p+9÷5=0 | | 57.50=4.50x-8 | | F(x)=12x+7/6x+3 | | -9.8t^2-19t-2=0 | | N^2+10n+50=0 | | 6(1-5x)=126 | | 3x-6=x+16 | | 1-3x=26/1-3x | | -2(6k-9)=-12(1+k) | | 1/2x-14=29 | | 8x=(7x-6)=13x-14 | | -5-2(6k-9)=-12(1+k) | | 8x-7x-6=13x+14 | | 5x-23=2(2x+7) | | 9x=2x+3 | | 8x-(7x-6)=(13x+14) | | x/3x-6=2-2x/x-2 | | (x)^1/2=3x-4/4 | | 2(5x+6)=11x+6 | | m3=100-13 |